786 research outputs found

    Comparison of the fluctuation influence on the resistive properties of the mixed state of BiSrCaCuO and of thin films of conventional superconductor

    Full text link
    The resistive properties of layered HTSC BiSrCaCuO in the mixed state are compared with those of thin films of conventional superconductors with weak disorders (amorphous Nb_{1-x}0_{x} films) and with strong disorders (Nb_{1-x}O_{x} films with small grain structure). The excess conductivity is considered as a function of superconducting electron density and phase coherence length. It is shown that the transition to the Abrikosov state differs from the ideal case both in BiSrCaCuO and Nb_{1-x}O_{x} films, i.e. the appearance of long-range phase coherence is continuous transition in both cases. The quantitative difference between thin films with weak and strong disorders is greater than the one between layered HTSC and conventional superconductors, showing that the dimensionality of the system, rather than the critical temperature, is the key factor ruling fluctuation effectsComment: 17 pages, 5 figure

    Superconducting properties of [BaCuO_x]_2/[CaCuO_2]_n artificial structures with ultrathick CaCuO_2 blocks

    Full text link
    The electrical transport properties of [BaCuO_x]_2/[CaCuO_2]_n (CBCCO-2xn)underdoped high temperature superconducting superlattices grown by Pulsed Laser Deposition have been investigated. Starting from the optimally doped CBCCO-2x2 superlattice, having three CuO_2 planes and T_c around 80 K, we have systematically increased the number n up to 15 moving toward the underdoped region and hence decreasing T_c. For n>11 the artificial structures are no longer superconducting, as expected, for a uniformly distributed charge carriers density inside the conducting block layer. The sheet resistance of such artificial structures (n nearly equal to 11) turns out to be quite temperature independent and close to the 2D quantum resistance 26 kOhm. A further increase of the number of CuO_2 planes results in an insulator-type dependence of R(T) in the wide range of temperatures from room temperature to 1 K. The value of the sheet resistance separating the Superconducting and the Insulating regimes supports the fermionic scenario of the Superconductor-Insulator transition in these systems.Comment: 12 pages, 5 figures. Corresponding author: [email protected]

    Presumptive Taxation, Markets, and Redistribution

    Get PDF
    In several Western countries, as well as in virtually all developing and transition ones, the government’s ability to redistribute income in favour of the less well-off is severely limited by the fact that certain groups of citizens can escape their tax obligations more easily than others. In this paper, we focus our attention on one of the possible responses to that problem, namely the recourse to presumptive taxation, whereby not income as such, but a proxy for income, is selected as the tax base. To study this issue, we employ an occupational choice model where an individual can either be a worker or an entrepreneur. We assume that a conventional income tax is in place and that only entrepreneurs, who are at the top of the income distribution, can partially avoid the income tax. In this setting, we show that presumptive taxation based either on occupational choice or on the firms’ input costs can raise the welfare of the workers, who are the poorest members of the society. This outcome is not necessarily achieved, however, by taxing entrepreneurs: in a number of circumstances, presumptive subsidies for the entrepreneurs are preferable to presumptive taxes, the reason being that the latter may cause production inefficiency as well as increase tax avoidance costs

    Effect of strain-induced electronic topological transitions on the superconducting properties of LaSrCuO thin films

    Full text link
    We propose a Ginzburg-Landau phenomenological model for the dependence of the critical temperature on microscopic strain in tetragonal high-Tc cuprates. Such a model is in agreement with the experimental results for LSCO under epitaxial strain, as well as with the hydrostatic pressure dependence of Tc in most cuprates. In particular, a nonmonotonic dependence of Tc on hydrostatic pressure, as well as on in-plane or apical microstrain, is derived. From a microscopic point of view, such results can be understood as due to the proximity to an electronic topological transition (ETT). In the case of LSCO, we argue that such an ETT can be driven by a strain-induced modification of the band structure, at constant hole content, at variance with a doping-induced ETT, as is usually assumed.Comment: EPJB, to be publishe

    Reflection High-Energy Electron Diffraction oscillations during epitaxial growth of artificially layered films of (BaCuOx)m /(CaCuO2)n

    Full text link
    Pulsed Laser Deposition in molecular-beam epitaxy environment (Laser-MBE) has been used to grow high quality BaCuOx/CaCuO2 superlattices. In situ Reflection High Energy Electron Diffraction (RHEED) shows that the growth mechanism is 2-dimensional. Furthermore, weak but reproducible RHEED intensity oscillations have been monitored during the growth. Ex-situ x-ray diffraction spectra confirmed the growth rate deduced from RHEED oscillations. Such results demonstrate that RHEED oscillations can be used, even for (BaCuOx)2/(CaCuO2)2 superlattices, for phase locking of the growth.Comment: 9 pages, 5 figures. Corresponding author: Dr. A. Tebano: [email protected]

    Analysis of charge transfer mechanism on (Ba1-xNdxCuO2+d)2/(CaCuO2)n superconducting superlattices by thermoelectric power measurements

    Full text link
    We have investigated the charge transfer mechanism in artificial superlattices by Seebeck effect measurements. Such a technique allows a precise determination of the amount of charge transferred on each CuO2 plane. A systematic characterization of thermoelectric power in (BaCuO2+d)2/(CaCuO2)n and (Ba0.9Nd0.1CuO2+d)2/(CaCuO2)n superlattices demonstrates that electrical charge distributes uniformly among the CuO2 planes in the Ca-block. The differences observed in the Seebeck effect behavior between the Nd-doped and undoped superlattices are ascribed to the different metallic character of the Ba-block in the two cases. Finally, the special role of structural disorder in superlattices with n=1 is pointed out by such analysis.Comment: subitted to PRB, 15 pages, 3 figure

    Flux creep in Bi2Sr2CaCu2O8(sub +x) single crystals

    Get PDF
    The results of a magnetic study on a Bi2Sr2CaCu2O(8+x) single crystal are reported. Low field susceptibility (dc and ac), magnetization cycles and time dependent measurements were performed. With increasing the temperature the irreversible regime of the magnetization cycles is rapidly restricted to low fields, showing that the critical current J(sub c) becomes strongly field dependent well below T(sub c). At 2.4 K the critical current in zero field, determined from the remanent magnetization by using the Bean formula for the critical state, is J(sub c) = 2 10(exp 5) A/sq cm. The temperature dependence of J(sub c) is satisfactorily described by the phenomenological law J(sub c) = J(sub c) (0) (1 - T/T(sub c) (sup n), with n = 8. The time decay of the zero field cooled magnetization and of the remanent magnetization was studied at different temperatures for different magnetic fields. The time decay was found to be logarithmic in both cases, at least at low temperatures. At T = 4.2 K for a field of 10 kOe applied parallel to the c axis, the average pinning energy, determined by using the flux creep model, is U(sub o) = 0.010 eV

    55Mn NMR and magnetization studies of La0.67Sr0.33MnO3 thin films

    Full text link
    55Mn nuclear magnetic resonance and magnetization studies of the series of La0.67Sr0.33MnO3 thin films have been performed at low temperature. Two distinct lines were observed, at 322 MHz and 380 MHz, corresponding to two different phases, the former located at the interface, with localized charges, and the latter corresponding to the film bulk, with itinerant carriers (as it was also found in Ca manganite films). The spin-echo amplitude was measured as a function of a dc magnetic field applied either in the film plane or perpendicular to it. The field dependence of both the main NMR signal intensity and frequency shift is quite consistent with that calculated in a simple single domain model. The best fit to the model shows that magnetization rotation processes play a dominant role when the applied field exceeds the effective anisotropy field. Distinctly different magnetic anisotropies are deduced from the interface NMR signal.Comment: 7 pages, 8 figure

    Evidence of orbital reconstruction at interfaces in La0.67Sr0.33MnO3 films

    Full text link
    Electronic properties of transition metal oxides at interfaces are influenced by strain, electric polarization and oxygen diffusion. Linear dichroism (LD) x-ray absorption, diffraction, transport and magnetization on thin La0.7Sr0.3MnO3 films, allow identification of a peculiar universal interface effect. We report the LD signature of preferential 3d-eg(3z2-r2) occupation at the interface, suppressing the double exchange mechanism. This surface orbital reconstruction is opposite of that favored by residual strain and independent of dipolar fields, chemical nature of the substrate and capping.Comment: 13 pages, 5 figure
    • …
    corecore